The Cohen-Macaulay property of affine semigroup rings in dimension 2

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cohen - Macaulay Property of Invariant Rings

If V is a faithful module for a nite group G over a eld of characteristic p > 0, then the ring of invariants need not be Cohen-Macaulay if p divides the order of G. In this article the cohomology of G is used to study the question of Cohen-Macaulayness of the invariant ring. Let R = S(V) be the polynomial ring on which G acts. Then the main result can be stated as follow: If H r (G; R) 6 = 0 fo...

متن کامل

Cohen–macaulay Quotients of Normal Semigroup Rings via Irreducible Resolutions

For a radical monomial ideal I in a normal semigroup ring k[Q], there is a unique minimal irreducible resolution 0 → k[Q]/I → W 0 → W 1 → · · · by modules W i of the form ⊕ j k[Fij ], where the Fij are (not necessarily distinct) faces of Q. That is, W i is a direct sum of quotients of k[Q] by prime ideals. This paper characterizes Cohen–Macaulay quotients k[Q]/I as those whose minimal irreducib...

متن کامل

On Cohen-Macaulay rings

In this paper, we use a characterization of R-modules N such that fdRN = pdRN to characterize Cohen-Macaulay rings in terms of various dimensions. This is done by setting N to be the dth local cohomology functor of R with respect to the maximal ideal where d is the Krull dimension of R.

متن کامل

0 on Cohen - Macaulay Rings of Invariants

We investigate the transfer of the Cohen-Macaulay property from a commutative ring to a subring of invariants under the action of a finite group. Our point of view is ring theoretic and not a priori tailored to a particular type of group action. As an illustration, we briefly discuss the special case of multiplicative actions, that is, actions on group algebras k[Z n ] via an action on Z n .

متن کامل

Local Rings of Finite Cohen-macaulay Type

Let (R,m) be a local Cohen-Macaulay ring whose m-adic completion R̂ has an isolated singularity. We verify the following conjecture of F.-O. Schreyer: R has finite Cohen-Macaulay type if and only if R̂ has finite Cohen-Macaulay type. We show also that the hypersurface k[[x0, . . . , xd]]/(f) has finite Cohen-Macaulay type if and only if k [[x0, . . . , xd]]/(f) has finite Cohen-Macaulay type, whe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2019

ISSN: 0092-7872,1532-4125

DOI: 10.1080/00927872.2018.1546392